Artificial intelligence, sustainability and environmental impact. A narrative and bibliometric study
DOI:
https://doi.org/10.58763/rc2025355Keywords:
bibliometrics, climate change, indexing languages, sustainable developmentAbstract
Studies on artificial intelligence (AI) have increased significantly over the past decade to the point that they have recently become essential to diverse fields. Regarding studies on sustainability, environmental care, and the application of technological advances, AI-based models have also gained particular significance. Accordingly, this study explored the relationship between AI, sustainability, and environmental impact through a mixed documentary review, which combined a narrative review and a bibliometric analysis. The narrative review examined the main ideas and stages that permeate the intersection of AI and sustainability, identifying their contributions and challenges. The bibliometric analysis provided a quantitative overview of scientific production, highlighting trends in terms of production, countries, and most influential keywords. The results reveal that AI has a crucial role in promoting sustainable practices, but it also poses risks that require careful consideration. Hence, the costs of AI must also be analyzed. The study underlined the need for a balanced approach that maximizes the benefits of AI while minimizing its negative impacts on the environment.
Metrics
References
Abeliuk, A., y Gutiérrez, C. (2021). Historia y evoluación de la inteligencia artificial. Revista Bits de Ciencia, 21, 14–21. https://revistasdex.uchile.cl/index.php/bits/article/view/2767
Ahmad, T., Madonski, R., Zhang, D., Huang, C., y Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128. https://doi.org/10.1016/j.rser.2022.112128
An, J., Liu, F., Shen, ... y Gao, K. (2022). IC neuron: An efficient unit to construct neural networks. Neural Networks, 145, 177–188. https://doi.org/10.1016/j.neunet.2021.10.005
Antonopoulos, I., Robu, V., Couraud, B., … y Wattam, S. (2020). Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, 130, 109899. https://doi.org/10.1016/j.rser.2020.109899
Balogun, A., Marks, D., Sharma, R., … y Salehi, P. (2020). Assessing the Potentials of Digitalization as a Tool for Climate Change Adaptation and Sustainable Development in Urban Centres. Sustainable Cities and Society, 53, 101888. https://doi.org/10.1016/j.scs.2019.101888
Balsalobre-Lorente, D., Abbas, J., He, C., Pilař, L., y Shah, S. (2023). Tourism, urbanization and natural resources rents matter for environmental sustainability: The leading role of AI and ICT on sustainable development goals in the digital era. Resources Policy, 82, 103445. https://doi.org/10.1016/j.resourpol.2023.103445
Bibri, S., Krogstie, J., Kaboli, A., y Alahi, A. (2024). Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environmental Science and Ecotechnology, 19, 100330. https://doi.org/10.1016/j.ese.2023.100330
Bittanti, S. (2022). The Mathematician Who Revolutionized Engineering: Norbert Wiener and His Stochastic Cosmos. Resonance, 27(12), 2127–2138. https://doi.org/10.1007/s12045-022-1509-9
Bolón-Canedo, V., Morán-Fernández, L., Cancela, B., y Alonso-Betanzos, A. (2024). A review of green artificial intelligence: Towards a more sustainable future. Neurocomputing, 599, 128096. https://doi.org/10.1016/j.neucom.2024.128096
Cabitza, F., Campagner, A., y Simone, C. (2021). The need to move away from agential-AI: Empirical investigations, useful concepts and open issues. International Journal of Human-Computer Studies, 155, 102696. https://doi.org/10.1016/j.ijhcs.2021.102696
Casado-Aranda, L., Sánchez-Fernández, J., y Viedma-del-Jesús, M. (2021). Analysis of the scientific production of the effect of COVID-19 on the environment: A bibliometric study. Environmental Research, 193, 110416. https://doi.org/10.1016/j.envres.2020.110416
Chakraborty, D., Alam, A., Chaudhuri, S., … y Langar, S. (2021). Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence. Applied Energy, 291, 116807. https://doi.org/10.1016/j.apenergy.2021.116807
Chang, A., y Limon, A. (2024). Introduction to artificial intelligence for cardiovascular clinicians. En Intelligence-Based Cardiology and Cardiac Surgery (pp. 3–120). Elsevier. https://doi.org/10.1016/B978-0-323-90534-3.00010-X
Chiu, T., Xia, Q., Zhou, X., Chai, C., y Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118
Dhar, P. (2020). The carbon impact of artificial intelligence. Nature Machine Intelligence, 2(8), 423–425. https://doi.org/10.1038/s42256-020-0219-9
Di Vaio, A., Hassan, R., y Alavoine, C. (2022). Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technological Forecasting and Social Change, 174, 121201. https://doi.org/10.1016/j.techfore.2021.121201
Doo, F., Cook, T., Siegel, E., … y Yi, P. (2023). Exploring the Clinical Translation of Generative Models Like ChatGPT: Promise and Pitfalls in Radiology, From Patients to Population Health. Journal of the American College of Radiology, 20(9), 877–885. https://doi.org/10.1016/j.jacr.2023.07.007
Du, S., y Xie, C. (2021). Paradoxes of artificial intelligence in consumer markets: Ethical challenges and opportunities. Journal of Business Research, 129, 961–974. https://doi.org/10.1016/j.jbusres.2020.08.024
Fosso, S., Bawack, R., Guthrie, C., Queiroz, M., y Carillo, K. (2021). Are we preparing for a good AI society? A bibliometric review and research agenda. Technological Forecasting and Social Change, 164, 120482. https://doi.org/10.1016/j.techfore.2020.120482
Godoy, M. (2024). Norbert Wiener and the Age of Controls, Communications, and Cybernetics—Animal and Machine—In Electrical Engineering [History]. IEEE Electrification Magazine, 12(2), 100–105. https://doi.org/10.1109/MELE.2024.3386243
Gonçalves, B. (2024). Lady Lovelace’s Objection: The Turing–Hartree Disputes Over the Meaning of Digital Computers, 1946–1951. IEEE Annals of the History of Computing, 46(1), 6–18. https://doi.org/10.1109/MAHC.2023.3326607
Goralski, M., y Tan, T. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. https://doi.org/10.1016/j.ijme.2019.100330
Groumpos, P. (2024). The Cybernetic Artificial Intelligence (CAI): Α new scientific field for modelling and controlling Complex Dynamical Systems. IFAC-PapersOnLine, 58(3), 145–152. https://doi.org/10.1016/j.ifacol.2024.07.141
Jimma, B. (2023). Artificial intelligence in healthcare: A bibliometric analysis. Telematics and Informatics Reports, 9, 100041. https://doi.org/10.1016/j.teler.2023.100041
Kaack, L., Donti, P., Strubell, E., … y Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 12(6), 518–527. https://doi.org/10.1038/s41558-022-01377-7
Krakowski, S., Luger, J., y Raisch, S. (2023). Artificial intelligence and the changing sources of competitive advantage. Strategic Management Journal, 44(6), 1425–1452. https://doi.org/10.1002/smj.3387
Krauss, P. (2024). What is Artificial Intelligence? En P. Krauss, Artificial Intelligence and Brain Research (pp. 107–112). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-68980-6_11
Kubassova, O., Shaikh, F., Melus, C., y Mahler, M. (2021). History, current status, and future directions of artificial intelligence. En Precision Medicine and Artificial Intelligence (pp. 1–38). Elsevier. https://doi.org/10.1016/B978-0-12-820239-5.00002-4
Lacoste, A., Luccioni, A., Schmidt, V., y Dandres, T. (2019). Quantifying the Carbon Emissions of Machine Learning (Versión 2). arXiv. https://doi.org/10.48550/ARXIV.1910.09700
Lim, J., y Zhang, J. (2022). Adoption of AI-driven personalization in digital news platforms: An integrative model of technology acceptance and perceived contingency. Technology in Society, 69, 101965. https://doi.org/10.1016/j.techsoc.2022.101965
Lobo, J., Del Ser, J., Bifet, A., y Kasabov, N. (2020). Spiking Neural Networks and online learning: An overview and perspectives. Neural Networks, 121, 88–100. https://doi.org/10.1016/j.neunet.2019.09.004
Lund, B., Wang, T., Mannuru, N., … y Wang, Z. (2023). CHATGPT and a new academic reality: ARTIFICIAL INTELLIGENCE‐WRITTEN research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74(5), 570–581. https://doi.org/10.1002/asi.24750
Múnera, L. (2010). Inteligencia artificial y sistemas expertos. [Tesis de grado]. Icesi. http://repository.icesi.edu.co/biblioteca_digital/handle/10906/4006
Natale, S., y Henrickson, L. (2024). The Lovelace effect: Perceptions of creativity in machines. New Media & Society, 26(4), 1909–1926. https://doi.org/10.1177/14614448221077278
Navaneethakrishnan, D. (2021). Human Problem-Solving: Standing on the Shoulders of the Giants. Computational Economics, 57(3), 857–868. https://doi.org/10.1007/s10614-018-9797-6
Nishant, R., Kennedy, M., y Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104
Nti, E., Cobbina, S., Attafuah, E., ... y Safo, A. (2023). Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon, 9(7), e18170. https://doi.org/10.1016/j.heliyon.2023.e18170
Oduro, S., Moss, E., y Metcalf, J. (2022). Obligations to assess: Recent trends in AI accountability regulations. Patterns, 3(11), 100608. https://doi.org/10.1016/j.patter.2022.100608
Palomares, I., Martínez-Cámara, E., Montes, R., … y Herrera, F. (2021). A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Applied Intelligence, 51(9), 6497–6527. https://doi.org/10.1007/s10489-021-02264-y
Radaideh, M., Pigg, C., Kozlowski, T., Deng, Y., y Qu, A. (2020). Neural-based time series forecasting of loss of coolant accidents in nuclear power plants. Expert Systems with Applications, 160, 113699. https://doi.org/10.1016/j.eswa.2020.113699
Riahi, Y., Saikouk, T., Gunasekaran, A., y Badraoui, I. (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications, 173, 114702. https://doi.org/10.1016/j.eswa.2021.114702
Straub, V., Morgan, D., Bright, J., y Margetts, H. (2023). Artificial intelligence in government: Concepts, standards, and a unified framework. Government Information Quarterly, 40(4), 101881. https://doi.org/10.1016/j.giq.2023.101881
Strubell, E., Ganesh, A., y McCallum, A. (2020). Energy and Policy Considerations for Modern Deep Learning Research. Proceedings of the AAAI Conference on Artificial Intelligence, 34(09), 13693–13696. https://doi.org/10.1609/aaai.v34i09.7123
Tamburrini, G. (2022). The AI Carbon Footprint and Responsibilities of AI Scientists. Philosophies, 7(1), 4. https://doi.org/10.3390/philosophies7010004
Tan, H., Li, J., He, M., … y Zhang, C. (2021). Global evolution of research on green energy and environmental technologies:A bibliometric study. Journal of Environmental Management, 297, 113382. https://doi.org/10.1016/j.jenvman.2021.113382
Tan, L., y Yi, J. (2024). Expert System for Extracting Hidden Information from Electronic Documents during Outgoing Control. Electronics, 13(15), 2924. https://doi.org/10.3390/electronics13152924
Truhn, D., Müller-Franzes, G., y Kather, J. (2023). The ecological footprint of medical AI. European Radiology, 34(2), 1176–1178. https://doi.org/10.1007/s00330-023-10123-2
van Wynsberghe, A. (2021). Sustainable AI: AI for sustainability and the sustainability of AI. AI and Ethics, 1(3), 213–218. https://doi.org/10.1007/s43681-021-00043-6
Woolen, S., Becker, A., Martin, A., … y Deshpande, V. (2023). Ecodesign and Operational Strategies to Reduce the Carbon Footprint of MRI for Energy Cost Savings. Radiology, 307(4), e230441. https://doi.org/10.1148/radiol.230441
Xin, Y., Man, W., y Yi, Z. (2021). The development trend of artificial intelligence in medical: A patentometric analysis. Artificial Intelligence in the Life Sciences, 1, 100006. https://doi.org/10.1016/j.ailsci.2021.100006
Yu, K., Zhang, Y., Li, D., Montenegro-Marin, C., y Kumar, P. (2021). Environmental planning based on reduce, reuse, recycle and recover using artificial intelligence. Environmental Impact Assessment Review, 86, 106492. https://doi.org/10.1016/j.eiar.2020.106492
Yuan, Q., Shen, H., Li, T., … y Zhang, L. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241, 111716. https://doi.org/10.1016/j.rse.2020.111716
Zare, A., Ablakimova, N., Kaliyev, A., … y Tamadon, A. (2024). An update for various applications of Artificial Intelligence (AI) for detection and identification of marine environmental pollutions: A bibliometric analysis and systematic review. Marine Pollution Bulletin, 206, 116751. https://doi.org/10.1016/j.marpolbul.2024.116751
Zhang, L., Ling, J., y Lin, M. (2022). Artificial intelligence in renewable energy: A comprehensive bibliometric analysis. Energy Reports, 8, 14072–14088. https://doi.org/10.1016/j.egyr.2022.10.347
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fabiano Domenico Camastra, Rubén González Vallejo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Este artículo se distribuye bajo la licencia Creative CommonsReconocimiento-NoComercial-CompartirIgual 4.0 Internacional. A menos que se indique lo contrario, el material publicado asociado se distribuye bajo la misma licencia.