Building computational thinking through the incorporation of STEM education into the secondary curriculum in the Quindío department (Colombia)
DOI:
https://doi.org/10.58763/rc202326Keywords:
documentary analysis, technology diffusion, search strategy, science and society, educational technologyAbstract
There is a need to create theoretical-practical models that, based on existing conceptual contributions, facilitate the informational and technological literacy of new generations. Incorporating STEM Education (science, technology, engineering, and mathematics) into the curriculum has proven helpful for secondary school students. The study aimed to generate the first approach to a model for understanding computational thinking (CT) from a STEM approach. This article displays the results of a conceptual review of topics related to the object of study in the last five years and the critical analysis of the found research. The main results highlight the importance of balancing technical, educational, and pedagogical aspects. Furthermore, critical components for model design are proposed. It is concluded that while achieving a conceptual scheme to guide STEM education is vital, it must be updated and reviewed frequently so that emerging disciplines and processes can be incorporated.
Metrics
References
Acosta, R. (2020). Metodologías de aprendizaje colaborativo mediado por las TIC en educación secundaria. [Tesis de Doctorado, Universidad de Salamanca] GREDOS. https://gredos.usal.es/handle/10366/145256
Alonso, G., Thumlert, K., de Castell, S. y Jenson, J. (2019). Pathways to sustainable futures: A “production pedagogy” model for STEM education. Futures, 108, 27-36. https://doi.org/10.1016/j.futures.2019.02.021
Arievitch, I. (2020). The vision of Developmental Teaching and Learning and Bloom's Taxonomy of educational objectives. Learning, Culture and Social Interaction, 25, 100274. https://doi.org/10.1016/j.lcsi.2019.01.007
Arlinwibowo, J., Retnawati, H. y Kartowagiran, B. (2021). How to Integrate STEM Education in The Indonesian Curriculum? ASystematic Review. Materials of International Practical Internet Conference “Challenges of Science” (IV), 18-25. https://doi.org/10.31643/2021.03
Bui, T.-L., Tran, T.-T., Nguyen, T.-H., Luyen, N.-T., Tran, V.-N., Dang, U., . . . Hoang, A.-D. (2023). Dataset of Vietnamese preschool teachers' readiness towards implementing STEAM activities and projects. Data in Brief, 46, 108821. https://doi.org/10.1016/j.dib.2022.108821
Burbaitė, R., Drąsutė, V. y Štuikys, V. (2018). Integration of computational thinking skills in STEM-driven computer science education. 2018 IEEE Global Engineering Education Conference (EDUCON). Tenerife: IEEE Xplore. https://doi.org/10.1109/EDUCON.2018.8363456
Campbell, C. y Speldewinde, C. (2022). Early Childhood STEM Education for Sustainable Development. Sustainability, 14(6), 3524. https://doi.org/10.3390/su14063524
Celis, D. y González, R. (2021). Aporte de la metodología Steam en los procesos curriculares. Revista Boletín Redipe, 10(8), 279-302. https://doi.org/10.36260/rbr.v10i8.1405
Chaves, M. (2020). Didáctica disruptiva STEM. Cambiando el paradigma de la docencia tradicional a la docencia coaching. Revista Fidélitas, 1(2), 41-48. https://doi.org/10.46450/revista_fidelitas.v1i2.24
Chu, W., Ong, E., Ayop, S., Azmi, M., Abdullah, A., Karim, N. y Tho, S. (2021). The innovative use of smartphone for sound STEM practical kit: a pilot implementation for secondary classroom. Research in Science & Technological Education, 41(3), 1-23. https://doi.org/10.1080/02635143.2021.1978963
Çiftçi, A. y Topçu, M. (2022). Improving early childhood pre-service teachers’ computational thinking teaching self-efficacy beliefs in a STEM course. Research in Science & Technological Education. https://doi.org/10.1080/02635143.2022.2036117
Costin, C. y Pontual, T. (2020). Curriculum Reform in Brazil to Develop Skills for the Twenty-First Century. In F. M. Reimers (Ed.), Audacious Education Purposes (pp. 47-64). SpringerOpen. https://doi.org/10.1007/978-3-030-41882-3_2
Delaney, J. y Devereux, P. (2019). Understanding gender differences in STEM: Evidence from college applications. Economics of Education Review, 72, 219-238. https://doi.org/10.1016/j.econedurev.2019.06.002
Dilekçi, A. y Karatay, H. (2023). The effects of the 21st century skills curriculum on the development of students’ creative thinking skills. Thinking Skills and Creativity, 47, 101229. https://doi.org/10.1016/j.tsc.2022.101229
Dixon, L., Dugger, S. y Hsu, H.-Y. (2020). STEM Magnet High Schools and Student Intent to Declare a STEM Major. The Educational Forum. https://doi.org/10.1080/00131725.2020.1843746
Eltanahy, M. y Forawi, S. (2020). Incorporating Entrepreneurial Practices into STEM Education: Development of Interdisciplinary E-STEM Model in High School in the United Arab Emirates. Thinking Skills and Creativity, 37, 100697. https://doi.org/10.1016/j.tsc.2020.100697
Gonzales, Y., Quintanilla, L. y Pérez, A. (2023). Metaverse and education: a complex space for the next educational revolution. Metaverse Basic and Applied Research, 2, 56-56. https://doi.org/10.56294/mr202356
González, C. (2020). Pensamiento computacional y robótica en educación infantiluna propuesta metodológica inclusiva. [Tesis de Doctorado, Universidad de Huelva] Repositorio Arias Montano. http://hdl.handle.net/10272/19545
Gutfleisch, T. y Kogan, I. (2022). Parental occupation and students’ STEM achievements by gender and ethnic origin: Evidence from Germany. Research in Social Stratification and Mobility, 82, 100735. https://doi.org/10.1016/j.rssm.2022.100735
Hatisaru, V., Falloon, G., Seen, A., Fraser, S., Powling, M. y Beswick, K. (2023). Educational leaders’ perceptions of STEM education revealed by their drawings and texts. International Journal of Mathematical Education in Science and Technology, 54(3) 1437-1457. https://doi.org/10.1080/0020739X.2023.2170290
Ho, M.-T., La, V.-P., Nguyen, M.-H., Pham, T.-H., Vuong, T.-T., Vuong, H.-M., . . . Vuong, Q.-H. (2020). An analytical view on STEM education and outcomes: Examples of the social gap and gender disparity in Vietnam. Children and Youth Services Review, 119, 105650. https://doi.org/10.1016/j.childyouth.2020.105650
Hu, C.-C., Yang, Y.-F., Cheng, Y.-W. y Chen, N.-S. (2023). Integrating educational robot and low-cost self-made toys to enhance STEM learning performance for primary school students. Behaviour & Information Technology. https://doi.org/10.1080/0144929X.2023.2222308
Huang, W. y Looi, C.-K. (2021). A critical review of literature on “unplugged” pedagogies in K-12 computer science and computational thinking education. Computer Science Education, 31(1), 83-111. https://doi.org/10.1080/08993408.2020.1789411
Jeong, J. y González-Gómez, D. (2020). A web-based tool framing a collective method for optimizing the location of a renewable energy facility and its possible application to sustainable STEM education. Journal of Cleaner Production, 251, 119747. https://doi.org/10.1016/j.jclepro.2019.119747
Kafai, Y. y Proctor, C. (2022). A Revaluation of Computational Thinking in K–12 Education: Moving Toward Computational Literacies. Educational Researcher, 51(2), 146-151. https://doi.org/10.3102/0013189X211057904
Kite, V., Park, S. y Wiebe, E. (2021). The Code-Centric Nature of Computational Thinking Education: A Review of Trends and Issues in Computational Thinking Education Research. SAGE Open, 11(2). https://doi.org/10.1177/21582440211016418
Li, Y., Schoenfeld, A., diSessa, A., Graesser, A., Benson, L., English, L. y Duschl, R. (2020). On Computational Thinking and STEM Education. Journal for STEM Education Research, 3, 147–166. https://doi.org/10.1007/s41979-020-00044-w
Lyon, J. y Magana, A. (2020). Computational thinking in higher education: A review of the literature. Computer Applications in Engineering Education, 28(5), 1174-1189. https://doi.org/10.1002/cae.22295
Ma, Y. (2021). Reconceptualizing STEM Education in China as Praxis: A Curriculum Turn. Sustainability, 13(9), 4691. https://doi.org/10.3390/su13094961
Markandan, N., Osman, K. y Halim, L. (2022). Integrating Computational Thinking and Empowering Metacognitive Awareness in Stem Education. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.872593
Mutambara, D. y Bayaga, A. (2021). Determinants of mobile learning acceptance for STEM education in rural areas. Computers & Education, 160, 104010. https://doi.org/10.1016/j.compedu.2020.104010
Nugroho, O., Permanasari, A., Firman, H. y Riandi, R. (2021). The Importance of Stem Based Education in Indonesia Curriculum. Curriculum. Pedagonal: Journal Ilmiah Pendidikan, 5(2), 56-61. https://doi.org/10.33751/pedagonal.v5i2.3779
Perales, F. y Aguilera, D. (2020). Ciencia-Tecnología-Sociedad vs. STEM: ¿evolución, revolución o disyunción? Ápice. Revista de Educación Científica, 4(1), 1-15. https://doi.org/10.17979/arec.2020.4.1.5826
Ramírez-Montoya, M., Rodríguez-Abitia, G., Hernández-Montoya, D., López-Caudana, E. y González-González, C. (2023). Open education for sustainable development: Contributions from emerging technologies and educational innovation. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1131022
Roncoroni, U., & Bailón, J. (2020). Pensamiento computacional. Alfabetización digital sin computadoras. ICONO 14, 18(2), 379-40. https://doi.org/10.7195/ri14.v18i2.1570
Santillán, J., Cadena, V. y Cadena, M. (2019). Educación Steam: entrada a la sociedad del conocimiento. Ciencia Digital, 3(3.4), 212-227. https://doi.org/10.33262/cienciadigital.v3i3.4.847
Sen, C., Ay, Z. y Kiray, S. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931. https://doi.org/10.1016/j.tsc.2021.100931
Sevilla, M., Bordón, P. y Ramirez-Espinoza, F. (2023). Reinforcing the STEM pipeline in vocational-technical high schools: The effect of female teachers. Economics of Education Review, 95, 102428. https://doi.org/https://doi.org/10.1016/j.econedurev.2023.102428
Siddiq, F. y Scherer, R. (2019). Is there a gender gap? A meta-analysis of the gender differences in students' ICT literacy. Educational Research Review, 27, 205-217. https://doi.org/10.1016/j.edurev.2019.03.007
Takeuchi, M., Sengupta, P., Shanahan, M.-C., Adams, J. y Hachem, M. (2020). Transdisciplinarity in STEM education: a critical review. Studies in Science Education, 56(2), 213-253. https://doi.org/10.1080/03057267.2020.1755802
Thuneberg, H., Salmi, H. y Bogner, F. (2018). How creativity, autonomy and visual reasoning contribute to cognitive learning in a STEAM hands-on inquiry-based math module. Thinking Skills and Creativity, 29, 153-160. https://doi.org/10.1016/j.tsc.2018.07.003
Tovar, D. (2019). Educación STEM en la Sudamérica hispanohablante. Latin-American Journal of Physics Education, 13(3), 3308-1-3308-7. https://dialnet.unirioja.es/servlet/articulo?codigo=7553951
van Broekhoven, K., Cropley, D. y Seegers, P. (2020). Differences in creativity across Art and STEM students: We are more alike than unalike. Thinking Skills and Creativity, 37, 100707. https://doi.org/10.1016/j.tsc.2020.100707
Vargas, D. y García, A. (2021). EDUCACIÓN STEM, UN CAMPO DE INVESTIGACIÓN EMERGENTE: ANÁLISIS BIBLIOMÉTRICO ENTRE 2010 – 2020. Investigações Em Ensino De Ciências, 26(3), 195-219. https://doi.org/10.22600/1518-8795.ienci2021v26n3p195
Velázquez, J. y Martín, M. (2021). Análisis del “pensamiento computacional” desde una perspectiva educativa. Revista de Educación a Distancia, 21(68), 1-18. https://doi.org/10.6018/red.484811
Wang, C., Shen, J. y Chao, J. (2022). Integrating Computational Thinking in STEM Education: A Literature Review. International Journal of Science and Mathematics Education, 20, 1949-1972. https://doi.org/10.1007/s10763-021-10227-5
Yalçın, V. y Erden, Ş. (2021). The Effect of STEM Activities Prepared According to the Design Thinking Model on Preschool Children's Creativity and Problem-Solving Skills. Thinking Skills and Creativity, 41, 100864. https://doi.org/10.1016/j.tsc.2021.100864
Yang, K.-L., Wu, H.-K., Yeh, Y.-F., Lin, K.-Y., Wu, J.-Y. y Hsu, Y.-S. (2021). Implementers, designers, and disseminators of integrated STEM activities: self-efficacy and commitment. Research in Science & Technological Education. https://doi.org/10.1080/02635143.2021.2008343
Zheng, J., Xing, W., Zhu, G., Chen, G., Zhao, H. y Xie, C. (2020). Profiling self-regulation behaviors in STEM learning of engineering design. Computers & Education, 143, 103669. https://doi.org/10.1016/j.compedu.2019.103669
Zizka, L., McGunagle, D. y Clark, P. (2021). Sustainability in science, technology, engineering and mathematics (STEM) programs: Authentic engagement through a community-based approach. Journal of Cleaner Production, 279, 123715. https://doi.org/10.1016/j.jclepro.2020.123715
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jameson Leonardo Jiménez Gómez, Edgar Javier Carmona Suarez
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Este artículo se distribuye bajo la licencia Creative CommonsReconocimiento-NoComercial-CompartirIgual 4.0 Internacional. A menos que se indique lo contrario, el material publicado asociado se distribuye bajo la misma licencia.